题目
【例8】设f(x,y)的全微分df(x,y)=-(1+ae^y)sinxdx+e^ay(acosx-1-ay)dy,且f(0,0)=2,(a≠0).(I)求a的值及f(x,y);(II)求f(x,y)的极值.
【例8】设f(x,y)的全微分df(x,y)=-(1+ae$^{y}$)sinxdx+e$^{ay}$(acosx-1-ay)dy,且f(0,0)=2,(a≠0).
(I)求a的值及f(x,y);
(II)求f(x,y)的极值.
题目解答
答案
**解:**
**(I) 求 $ a $ 的值及 $ f(x, y) $**
由全微分条件:
$$
\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \Rightarrow -ae^y \sin x = -ae^{ay} \sin x \Rightarrow a = 1
$$
代入得:
$$
df = -(1 + e^y) \sin x \, dx + e^y (\cos x - 1 - y) \, dy
$$
积分求 $ f(x, y) $:
$$
f(x, y) = (1 + e^y) \cos x - y e^y + C
$$
由 $ f(0, 0) = 2 $,得 $ C = 0 $,故:
$$
f(x, y) = (1 + e^y) \cos x - y e^y
$$
**(II) 求极值**
求偏导并令为零:
$$
f_x = -(1 + e^y) \sin x = 0 \Rightarrow x = k\pi
$$
$$
f_y = e^y (\cos x - 1 - y) = 0 \Rightarrow y = \cos x - 1
$$
解得临界点:$ (2n\pi, 0) $ 和 $ ((2n+1)\pi, -2) $
二阶偏导:
$$
f_{xx} = -(1 + e^y) \cos x, \quad f_{xy} = -e^y \sin x, \quad f_{yy} = e^y (\cos x - 2 - y)
$$
对于 $ (2n\pi, 0) $:
$$
AC - B^2 = 2 > 0, \quad A < 0 \Rightarrow \text{极大值 } 2
$$
对于 $ ((2n+1)\pi, -2) $:
$$
AC - B^2 < 0 \Rightarrow \text{非极值点}
$$
**答案:**
\[
\boxed{
\begin{array}{ll}
\text{(I)} & a = 1, \quad f(x, y) = (1 + e^y) \cos x - y e^y \\
\text{(II)} & \text{极大值 } 2 \text{,在点 } (2k\pi, 0) \text{ 处取得,} k \in \mathbb{Z}
\end{array}
}
\]