题目
真题自测(1992)lim_(xto0)(e^x-sin x-1)/(1-sqrt(1-x^2))
真题自测(1992)
$\lim_{x\to0}\frac{e^{x}-\sin x-1}{1-\sqrt{1-x^{2}}}$
题目解答
答案
利用泰勒展开近似:
- $e^x \approx 1 + x + \frac{x^2}{2}$,
- $\sin x \approx x$,
- $\sqrt{1 - x^2} \approx 1 - \frac{x^2}{2}$。
代入原式:
$$
\lim_{x \to 0} \frac{(1 + x + \frac{x^2}{2}) - x - 1}{1 - (1 - \frac{x^2}{2})} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{\frac{x^2}{2}} = 1.
$$
或使用洛必达法则:
$$
\lim_{x \to 0} \frac{e^x - \cos x}{\frac{x}{\sqrt{1 - x^2}}} = \lim_{x \to 0} \frac{e^x + \sin x}{1} = 1.
$$
答案:$\boxed{1}$
解析
步骤 1:使用泰勒展开近似
- $e^x \approx 1 + x + \frac{x^2}{2}$, - $\sin x \approx x$, - $\sqrt{1 - x^2} \approx 1 - \frac{x^2}{2}$。
步骤 2:代入原式
代入原式: $$ \lim_{x \to 0} \frac{(1 + x + \frac{x^2}{2}) - x - 1}{1 - (1 - \frac{x^2}{2})} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{\frac{x^2}{2}} = 1. $$
步骤 3:验证结果
或使用洛必达法则: $$ \lim_{x \to 0} \frac{e^x - \cos x}{\frac{x}{\sqrt{1 - x^2}}} = \lim_{x \to 0} \frac{e^x + \sin x}{1} = 1. $$
- $e^x \approx 1 + x + \frac{x^2}{2}$, - $\sin x \approx x$, - $\sqrt{1 - x^2} \approx 1 - \frac{x^2}{2}$。
步骤 2:代入原式
代入原式: $$ \lim_{x \to 0} \frac{(1 + x + \frac{x^2}{2}) - x - 1}{1 - (1 - \frac{x^2}{2})} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{\frac{x^2}{2}} = 1. $$
步骤 3:验证结果
或使用洛必达法则: $$ \lim_{x \to 0} \frac{e^x - \cos x}{\frac{x}{\sqrt{1 - x^2}}} = \lim_{x \to 0} \frac{e^x + \sin x}{1} = 1. $$