题目
类似地,求极限lim_(ntoinfty)nint_(0)^1x^nsqrt(1+x^2)dx.
类似地,
求极限$\lim_{n\to\infty}n\int_{0}^{1}x^{n}\sqrt{1+x^{2}}dx$.
题目解答
答案
使用分部积分法,设 $u = \sqrt{1 + x^2}$,$dv = x^n \, dx$,则 $du = \frac{x}{\sqrt{1 + x^2}} \, dx$,$v = \frac{x^{n+1}}{n+1}$。分部积分得:
\[
\int_{0}^{1} x^n \sqrt{1 + x^2} \, dx = \frac{\sqrt{2}}{n+1} - \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 + x^2}} \, dx.
\]
乘以 $n$ 并取极限,利用 $\lim_{n \to \infty} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 + x^2}} \, dx = 0$,得:
\[
\lim_{n \to \infty} n \int_{0}^{1} x^n \sqrt{1 + x^2} \, dx = \sqrt{2}.
\]
或者,由连续函数 $f(x)$ 的性质:
\[
\lim_{n \to \infty} n \int_{0}^{1} x^n f(x) \, dx = f(1),
\]
取 $f(x) = \sqrt{1 + x^2}$,得 $f(1) = \sqrt{2}$。
**答案:** $\boxed{\sqrt{2}}$
解析
步骤 1:分部积分法
设 $u = \sqrt{1 + x^2}$,$dv = x^n \, dx$,则 $du = \frac{x}{\sqrt{1 + x^2}} \, dx$,$v = \frac{x^{n+1}}{n+1}$。根据分部积分法,我们有:
\[ \int_{0}^{1} x^n \sqrt{1 + x^2} \, dx = \left[ \frac{x^{n+1}}{n+1} \sqrt{1 + x^2} \right]_{0}^{1} - \int_{0}^{1} \frac{x^{n+1}}{n+1} \cdot \frac{x}{\sqrt{1 + x^2}} \, dx. \]
步骤 2:计算边界值
计算边界值,我们得到:
\[ \left[ \frac{x^{n+1}}{n+1} \sqrt{1 + x^2} \right]_{0}^{1} = \frac{1}{n+1} \sqrt{2} - 0 = \frac{\sqrt{2}}{n+1}. \]
步骤 3:简化积分
简化积分,我们得到:
\[ \int_{0}^{1} \frac{x^{n+1}}{n+1} \cdot \frac{x}{\sqrt{1 + x^2}} \, dx = \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 + x^2}} \, dx. \]
步骤 4:乘以 $n$ 并取极限
乘以 $n$ 并取极限,我们得到:
\[ \lim_{n \to \infty} n \int_{0}^{1} x^n \sqrt{1 + x^2} \, dx = \lim_{n \to \infty} n \left( \frac{\sqrt{2}}{n+1} - \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 + x^2}} \, dx \right). \]
步骤 5:利用极限性质
利用 $\lim_{n \to \infty} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 + x^2}} \, dx = 0$,我们得到:
\[ \lim_{n \to \infty} n \int_{0}^{1} x^n \sqrt{1 + x^2} \, dx = \lim_{n \to \infty} \frac{n \sqrt{2}}{n+1} = \sqrt{2}. \]
设 $u = \sqrt{1 + x^2}$,$dv = x^n \, dx$,则 $du = \frac{x}{\sqrt{1 + x^2}} \, dx$,$v = \frac{x^{n+1}}{n+1}$。根据分部积分法,我们有:
\[ \int_{0}^{1} x^n \sqrt{1 + x^2} \, dx = \left[ \frac{x^{n+1}}{n+1} \sqrt{1 + x^2} \right]_{0}^{1} - \int_{0}^{1} \frac{x^{n+1}}{n+1} \cdot \frac{x}{\sqrt{1 + x^2}} \, dx. \]
步骤 2:计算边界值
计算边界值,我们得到:
\[ \left[ \frac{x^{n+1}}{n+1} \sqrt{1 + x^2} \right]_{0}^{1} = \frac{1}{n+1} \sqrt{2} - 0 = \frac{\sqrt{2}}{n+1}. \]
步骤 3:简化积分
简化积分,我们得到:
\[ \int_{0}^{1} \frac{x^{n+1}}{n+1} \cdot \frac{x}{\sqrt{1 + x^2}} \, dx = \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 + x^2}} \, dx. \]
步骤 4:乘以 $n$ 并取极限
乘以 $n$ 并取极限,我们得到:
\[ \lim_{n \to \infty} n \int_{0}^{1} x^n \sqrt{1 + x^2} \, dx = \lim_{n \to \infty} n \left( \frac{\sqrt{2}}{n+1} - \frac{1}{n+1} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 + x^2}} \, dx \right). \]
步骤 5:利用极限性质
利用 $\lim_{n \to \infty} \int_{0}^{1} \frac{x^{n+2}}{\sqrt{1 + x^2}} \, dx = 0$,我们得到:
\[ \lim_{n \to \infty} n \int_{0}^{1} x^n \sqrt{1 + x^2} \, dx = \lim_{n \to \infty} \frac{n \sqrt{2}}{n+1} = \sqrt{2}. \]