题目
(3)设D=((x,y)|x²+y²≤4),计算I=iintlimits_(D)|2x-x^2-y^2|dx dy.
(3)设D={(x,y)|x²+y²≤4},计算$I=\iint\limits_{D}|2x-x^{2}-y^{2}|dx dy$.
题目解答
答案
将积分区域 $D$ 分为两部分:
1. $D_1: (x-1)^2 + y^2 \leq 1$(圆 $2x - x^2 - y^2 \geq 0$),
2. $D_2: x^2 + y^2 \leq 4$ 且 $(x-1)^2 + y^2 > 1$(圆 $2x - x^2 - y^2 < 0$)。
原积分可写为:
\[ I = \iint\limits_{D_1} (2x - x^2 - y^2) \, dx \, dy + \iint\limits_{D_2} (x^2 + y^2 - 2x) \, dx \, dy. \]
利用对称性,$\iint\limits_{D} 2x \, dx \, dy = 0$,化简得:
\[ I = 2 \iint\limits_{D_1} (2x - x^2 - y^2) \, dx \, dy + \iint\limits_{D} (x^2 + y^2) \, dx \, dy. \]
计算得:
\[ \iint\limits_{D} (x^2 + y^2) \, dx \, dy = 8\pi, \]
\[ \iint\limits_{D_1} (2x - x^2 - y^2) \, dx \, dy = \frac{\pi}{2}. \]
因此,
\[ I = 2 \times \frac{\pi}{2} + 8\pi = 9\pi. \]
答案:$\boxed{9\pi}$