int dfrac (1)(1+cos 2x)dx=______.
求下列极限lim _(xarrow {0)^+}((1+dfrac {1)(x))}^x
int dfrac (1)({x)^2}sqrt (dfrac {1-x)(1+x)}dx
4.求下列极限:-|||-(1) lim _(xarrow infty )(e)^dfrac (1{x)} :-|||-x→∞-|||-(3) lim _(xarrow infty )((1+dfrac {1)(x))}^dfrac (x{2)} ;-|||-(5) lim _(xarrow infty )((dfrac {3+x)(6+x))}^dfrac (x-1{2)} :-|||-(7) lim _(xarrow e)dfrac (ln x-1)(x-e)-|||-(2) lim _(xarrow 0)ln dfrac (sin x)(x) =-|||-(4) lim _(xarrow 0)((1+3{tan )^2x)}^(cos ^2x) ;-|||-(6) lim _(xarrow 0)dfrac (sqrt {1+tan x)-sqrt (1+sin x)}(xsqrt {1+{sin )^2x}-x} =-|||-(8) lim _(xarrow 0)dfrac ({e)^3x-(e)^2x-(e)^x+1}(sqrt [3]{(1-x)(1+x))-1}
类似地,求极限lim_(ntoinfty)nint_(0)^1x^nsqrt(1+x^2)dx.
求lim _(xarrow +infty )x(sqrt ({x)^2+1}-x)
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a,b为何值时, (Ⅰ) β不能由α1,α2,α3线性表示; (Ⅱ) β可由α1,α2,α3唯一地线性表示,并求出表示式; (Ⅲ) β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式.
[题目]求函数 =(x)^2+(y)^2+(z)^2 在约束条件 =(x)^2+(y)^2 和-|||-x+y+z=4 下的最大值与最小值.
一、填空题(本题共2小题)-|||-1.下列不等式中成立的是 __-|||-①若 gt bgt 0 则 (c)^2gt b(c)^2; ②若 gt bgt 0, 则 ^2gt (b)^2;-|||-③若 lt alt 1 , -2lt blt -1, 则 lt a-2blt 5; ④若 lt blt 0, 则 dfrac (1)(a)lt dfrac (1)(b)-|||-2.用不等号">"或"b, 且 1/a>1/b, 则ab __ 0.
一个五边形,每个内角观测的中误差为 ± 30 ′′,求五边形内角和的中误差为多少?内角和闭合差的容许值为多少?
热门问题
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4 B. 1, 2, 3, 5 C. 1, 2,4, 5 D. 1,3, 4, 5
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
11.当 k=() () 时,函数 f(x)= ) (e)^x+2,xneq 0 k, x=0 . 在 x=0 处连续.-|||-A.0 B.1 C.2 D.3
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]
【单选题】已知谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),将其化为子句集的结果正确的是A. S = (¬P(x,y)∨Q(x,y)) B. S = (¬P(x,y)Q(x,y)) C. S = (P(x,y) ꓦ Q(x,y)) D. S = (P(x,y)Q(x,y))
下列哪项不是命题() A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111 B. 000-010-001-101-111 C. 000-100-110-111 D. 000-001-011-111
十六进制数3A.B对应的八进制数是()
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
下列哪项不是命题() A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
求定积分(int )_(0)^1((3x-2))^4dx
已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
函数y=x2+2x-7 在区间( 内满足( ).. A.先单调下降再单调上升 B.单调下降 C.先单调上升再单调下降 D.单调上升正确
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.